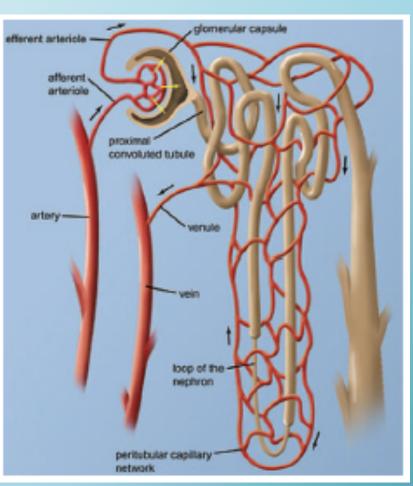
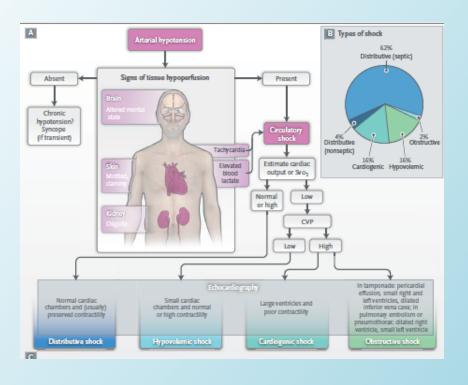
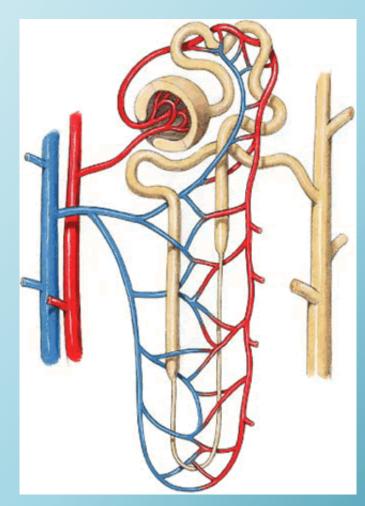
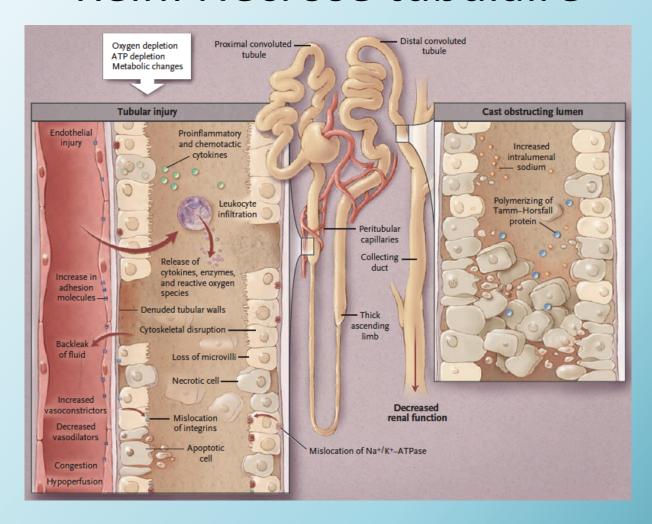

Le rein et le choc Insuffisance Rénale Aiguë Acute Kidney Injury

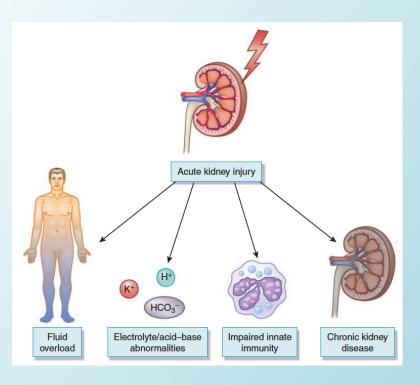

Guillen A Miguel
Médecin néphrologue Epicura Hornu
Cantineau Nathalie
Infirmière USI Epicura Hornu

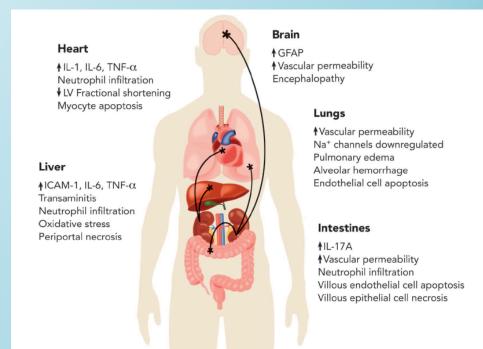
Insuffisance Rénale Aiguë Acute Kidney Injury Lésion Rénale Aiguë


- AKI: physiopathologie
- AKI: stadification.
- AKI: prévention.
- AKI: EER.

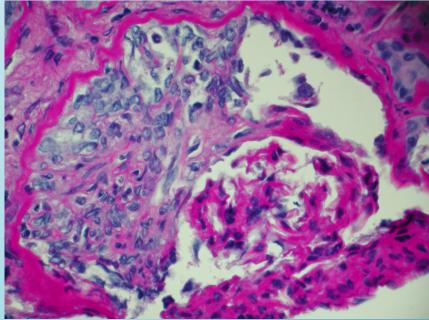

Rein: Histologie et Fonction




Rein: Hypoperfusion:02



Rein: Nécrose tubulaire



Pièges au soins intensifs

Pathologie post rénale

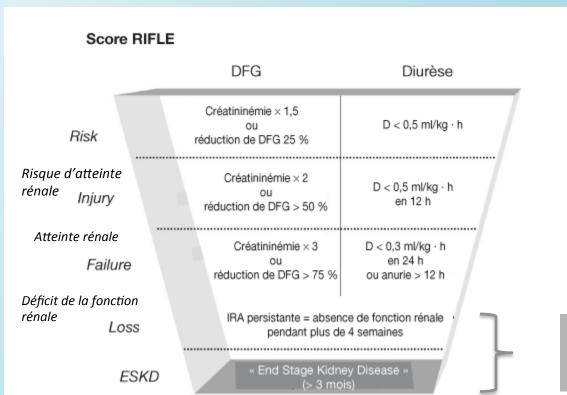
Pathologie rénale primaire

Historique

Multitude de définitions pour l'IRA durant des années

Historique

 2002 : première entente pour une définition précise

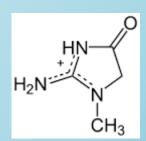


• BUTS:

- Stadifier : déterminer le degré d'atteinte rénale
- Standardiser : introduction des données précises pour les études

Historique

2002: Classification RIFLE


Les 2 derniers stades tendent vers la chronicité> 4sem

Stade dysfonction rénale aigüe (AKI – Acute Kidney Injury)			
	Créatinine	Débit Urinaire	
Stade 1	X 1,5-1,9 dans les 7 j ou + 0,3 en 48h	< 0,5 ml/Kg/h en 6h	
Stade 2	X 2-2,9 dans les 7 j	< 0,5 ml/Kg/h en 12h	
Stade 3	X 3 dans les 7 j, ou > 4 mg/dL ou + 0,5 si créa > 4 mg/dl à la base	< 0,3 ml/Kg/h en 24h ou anurie de 12h	

Tableau 1. Le critère le plus grave entre la valeur de créatinine ou de débit urinaire définit le stade.

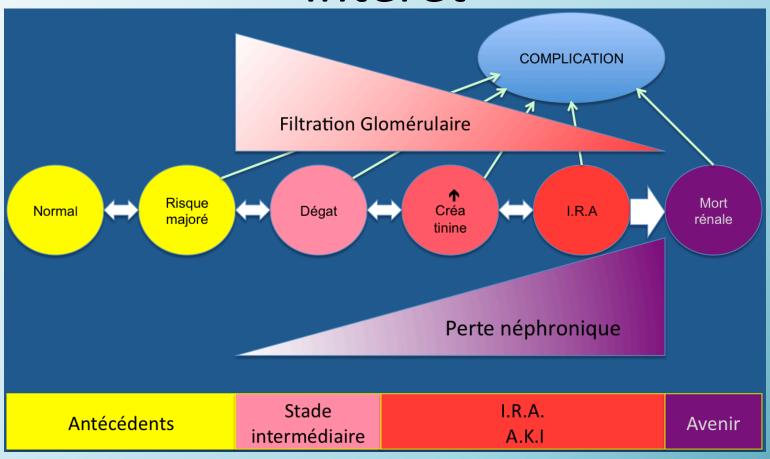
Rappel ... Créatinine?

• Déchet métabolique : catabolisme de la créatine musculaire

- Dépend de la masse musculaire (production) et de la fonction rénale (élimination)
- Normes:
 - Homme : 0,7 1,2 mg/dl
 - Femme : 0,5 0,9 mg/dl

CREATININE – DEBIT URINAIRE

CREATININE


- Créatinine de base chez le patient (valeur antérieure?)
- Masse musculaire ! Fonte musculaire chez les patients (une créatinine normale peut masquer une IRA)

Débit Urinaire

- Anamnèse du patient à l'admission dernières urines
- Sur sonde vésicale
- Exclure un obstacle postrénal (vérifier la perméabilité de la sonde!!!)

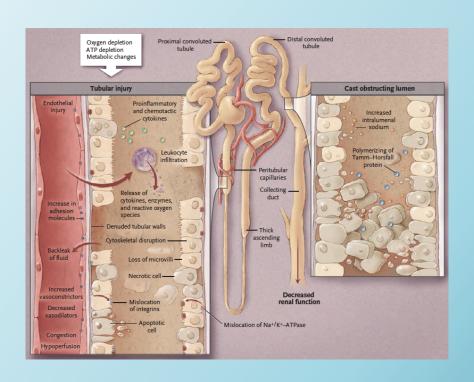
Ces critères restent partiels et sont à adapter à chaque situation Patient normovolémique 50% de perte néphronique avant une répercussion biologique

Intérêt

Corrélation entre le niveau de dysfonction et le degré d'atteinte rénale : plus la nécrose tubulaire sera étendue, plus la fonction rénale sera atteinte...

Intérêt

Vigilance :


Détecter rapidement un patient en IRA aux SI pour diminuer l'impact de cette IRA sur la mortalité des patients

Score AKIn facteur de risque indépendant de mortalité : AKI = Mortalité 7

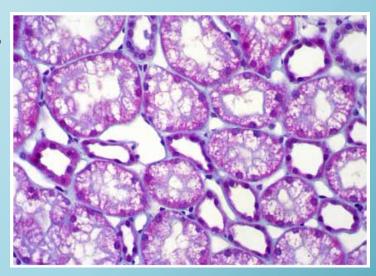
Oxygène et Perfusion

* Apport O2
* Adaptation
Ventilation

- Volémisation
- Cristalloïde
- Correction
 hémodynamique

Médication protectrice ?

Passé!


- Furosémide : non
- Dopamine: non
- Fenoldopam: non
- Lysomucil: non
- Théophyline: adulte non
- I GF1: non

Futur?

- Bloqueur de l'apoptose cellulaire
- Hormone d'hibernation
- Hormone de vasodilatation

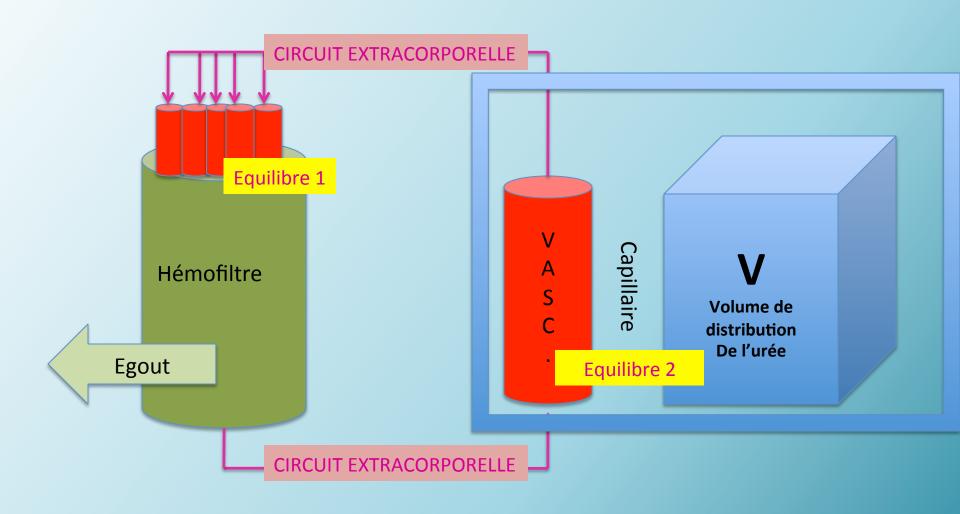
Toxiques Tubulaires

- Médication:
 - Aminoglycoside, Amphotéricine, ...
 - IEC, ARBS, Cyclosporine
 - Certaines chimiothérapies
 - Fleet phosphaté
 - **–** ...
- Radiologie:
 - Contraste iodé

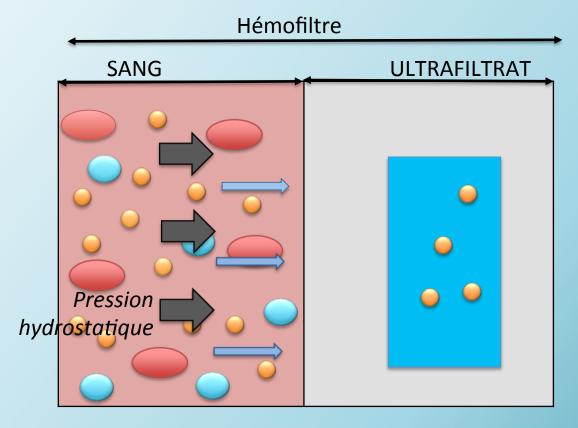
Epuration Extra-Rénale (EER): Quand commencer?

- AKI de Stade 3 (créat base x 3 ou >4mg/dl, anurie, oligurie (DU<0,3ml/kg/h)
 - Hyperkaliémie menaçante (>7mmol/l ou trend)
 - Acidose métabolique (pH<7,2)
 - Surcharge volémique / OAP réfractaire (FiO2)
 - « Urémie » sévère, clearance créat <10 ml/min
 - Intoxication (surdosage médicamenteux, toxique)

Les techniques d'épuration extra-rénale

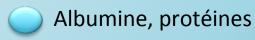

Les bases

- 2 grands principes physiques :
 - CONVECTION
 - DIFFUSION

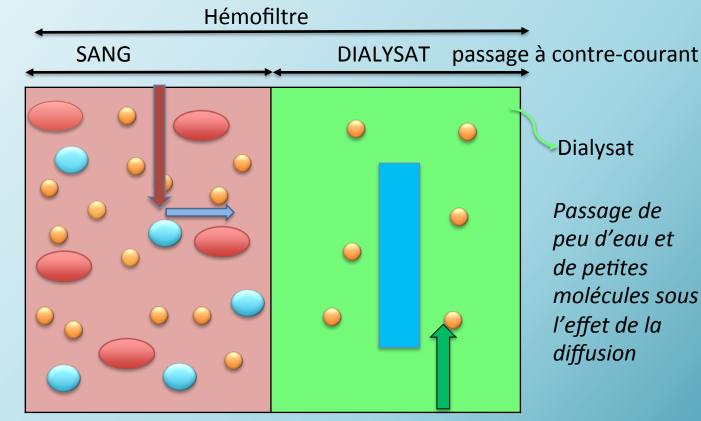

Les détails médicaux...

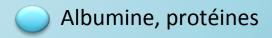
- Accès vasculaire
- Filtre
- Anticoagulation
- Ultrafiltration simple
- Ultrafiltration Substitution
- Dialysat
- Thermodynamie
- Echange ionique
- Changement osmotique
- Clearance
- Contrôle qualité

Modèle Tri compartimental



CONVECTION = Hémofiltration = Gradient de pression


Passage de beaucoup d'eau, de petites et moyennes molécules sous l'effet de la pression hydrostatique



DIFFUSION = Hémodialyse : Gradient de concentration

Les petites
molécules
diffusent du
milieu le plus
concentré
(sang) vers le
milieu le
moins
concentré
(dialysat)

Les modes d'épuration extrarénale continue

- **Hémofiltration : CVVH :** *Hémofiltration veino-veineuse continue*(Continuous veno-venous hemofiltration) = **CONVECTION** (substitution)
- Hémodialyse : CVVHD :
 Hémodialyse veino-veineuse continue
 (continuous veno-venous hemodialysis) = DIFFUSION (dialysat)
- Hémodiafiltration : CVVHDF :

 Hémodiafiltration veino-veineuse continue

 (continuous veno-venous hemodiafiltration) = DIFFUSION + CONVECTION
 (dialysat + substitution)

IHD vs CRRT?

IHD: Hémodialyse intermittente

Avantages :

- Durée anticoagulation moins longue
- Capacité de très haut taux de d'ultrafiltration
- Clairance élevée et rapide pour les petites molécules
- Mobilité du patient
- Moindre coût.
- Elimination de certains toxiques

Inconvénients :

- Nécessité d'une bonne hémodynamique pour les taux d'UF. (gestion de la volémie plus délicate)
- Délai d'équilibration de l'urée: remontée du taux d'urée après fin de dialyse par équilibration avec le taux d'urée extravasculaire
- Sécurité microbiologique de l'eau. (actuellement moins vrai)
- Nécessité d'un très bon accès vasculaire

IHD?

	Avantages	Inconvénients	
Ultrafiltration	Taux élevé, correction rapide OAP	Taux non étalé dans le temps : risque hémodynamique pour les chocs	
news	Capteur online du suivi de volume plasmatique et de la SVO2 (voir Sa02) limite les risques d'instabilité		
Dialysance	Très rapide pour les petites et moyenne molécules (Bicar, K, intoxication,)	Nécessité d'accès au V du patient, médiocre pour les patients en choc.	
news	Calculateur de clearance et KT/V online. Suivi PRU (limitatif en réanimation)		
Anticoagulation	Courte et faible , voire nulle si < 180 min		
news	Amlioraiton des protocoles citrates, membre	titon des protocoles citrates, membrane anticolagulante.	
Impact Thermodynamique	Courte.	Variation rapide selon le QB.	
Acces Vasculaire		Nécessité d'une Accès permettant de haut débit sanguin (QB 300-350)	
Mobilité.	Patient libre entre les périodes interdialytiques (+_20h/24h)	Nécessite la mobilité service de dialyse.	
Coût	Faible par rapport CRRT		
Attente: HDF	Meilleur capacité d'élimination de grande molécule	Coût, eau ultrapure	
Attente: HD équilibrium	Amélioration stabilité hémodynamique	Coût du filtre	
Attente: HD + Absorption	Certains toxiques.		

IHD vs CRRT?

CRRT Continuous renal replacement therapy Epuration extra-rénale continue

- Avantages :
 - Meilleure stabilité HD
 - Gestion volémique continue et dynamique (urée réelle)
 - Contrôle métabolique continu
 - Epuration continue de molécules de taille moyenne
 - Liquides stériles

Inconvénients :

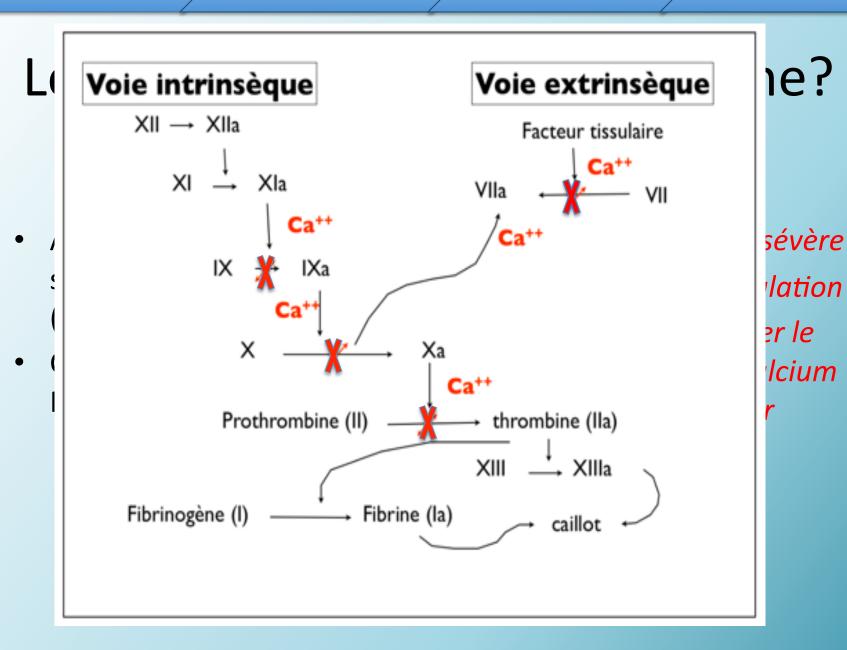
- Anticoagulation continue
- Immobilisation du patient
- Problèmes de filtre
- Coût augmenté
- Charge de travail augmentée

CRRT?

CRRT	Avantages	Inconvénients	
Ultrafiltration	Taux étalé dans le temps, idéal pour les patients hémodynamique instable	Taux d'UF limité en cas de besoin de rapide	
news	Capteur online du suivi de volume plasmatique ?, impact sur la PiCCO probablement plus faible qu'une intermittente.		
Dialysance	Très peu dépendante de l'accès (stabilité HD) au volume de distribution	Lente, non adéquate pour les urgences	
news	SLED compromis entre IHD rapide et CRRT lente		
Anticoagulation	Citrate: pas d'impact anticoagulant sur le patient	Nécessité d'un protocole lourd et éducation nursing	
news	Amélioraiton des protocoles citrates,		
Impact Thermodynamique	Courte.	Variation rapide selon le QB.	
news	Capteur pour isothermie		
Acces Vasculaire	Nécessité d'une Accès permettant des débits moyens	Manipulation longue de l'acces vasculaire	
Mobilité.		 Patient limité au lit. Mobilisation lourde du nursing USI	
Coût	(en diminution vu tps de survie des filtres)	+++	

Anticoagulation?

- INDISPENSABLE afin de préserver le circuit (thrombose du circuit)
 - Anticoagulation systémique : héparine
 Anticoagulation du patient et du circuit EER
 dosage TCA (1,5 2 x norme)
 - Anticoagulation régionale : citrate
 Anticoagulation du circuit EER uniquement
 - Pas d'anticoagulation si le patient ne rentre dans aucune des conditions héparine / citrate


Le citrate ... Comment ça marche?

Mécanisme

- Anticoagulation du circuit, sans anticoaguler le patient (anticoagulation régionale)
- Chélateur de Ca++ (et du Mg++)

Effets locaux

- → Hypocalcémie locale sévère
- → Inhibition de la coagulation
- → Nécessité de recharger le sang du patient en calcium juste avant son retour systémique

Le citrate ... Métabolisation

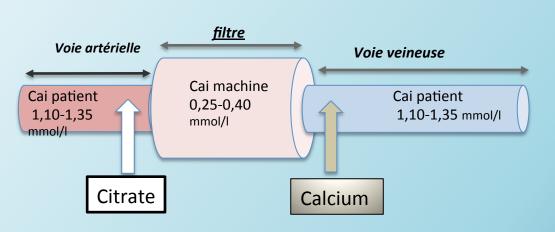
Na₃Citrate + 3 H₂CO₃ \longrightarrow 3 NaHCO3 + <u>acide citrique</u> (c₆H₈O₇) cycle Krebs \longrightarrow CO2 + H2O

- Le citrate est métabolisé par
 - Le foie
- Les muscles
- Le cortex rénal (pas si NTA)

Une partie du citrate est également éliminée au travers du filtre

Le citrate ... Métabolisation

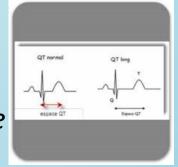
Na₃Citrate + 3 H₂CO₃ \longrightarrow 3 NaHCO3 + <u>acide citrique</u> (c₆H₈O₇) acycle Krebs \longrightarrow CO2 + H2O

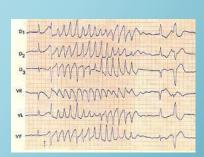

- Dans le foie, le citrate libère le Calcium et produit :
 - 3 mol bicarbonate -> risque d'alcalose métabolique si surdosage de citrate
 - 3 mol Na+ (Citrate 3sodique) -> risque hypernatrémie
- Insuffisance hépatique : citrate non métabolisé
 → Accumulation
 citrate → acidose métabolique sévère avec trou anionique
 augmenté mais lactates normaux

Le citrate ... Monitoring

- Surveillance : rapport Ca total / Ca ionisé patient
- NORME: rapport Ca total/Ca ionisé pat < 2,5
- Si valeur > 2,5 ??
 - Accumulation de citrate par défaut de métabolisation (Insuff Hépatique)
 - Diminuer/ Stopper la perfusion de citrate
- Vigilance lors d'acidose métabolique

Le citrate ... Valeurs cibles


- Ca i <0,5 mmol/l : coagulation perturbée</p>
- Ca i <0,3 mmol/l : coagulation inexistante</p>
- Ca i patient 1,10 1,35 mmol/L
- Ca i machine : 0,25-0,40 mmol/L
 - Administrer solution de calcium avant retour du sang au patient Perfusion de calcium
 - Administrer également solution de magnésium



Le citrate ... Conséquences – risques

- Risques hypocalcémie :
 - paresthésies, tétanie
 - allongement QT, torsade pointe
 - hTA, bas DC, choc

- Risques hypercalcémie : HTA, altération conscience
- Risques hypomagnésémie: troubles RC, troubles neuromusculaires, troubles neurologiques

Anticoagulation? ... Le Citrate

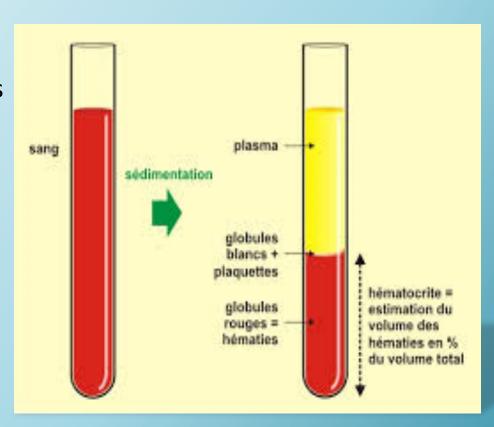
Indications: GOLD STANDARD KDIGO -AKI

Beaucoup de situations : ... haut risque hémorragique, saignement actif, saignement récent, thrombopénie induite par héparine, patient sous héparine avec anticoagulation circuit EER non efficace ...

- Contre-indications relatives :
 - Insuffisance hépatique, cirrhose Ca_{tot}/Ca_i pat Inexpérience ou manque de formation
- Contre-indication absolue :
 Hépatite aigue (rarement besoin d'anticoagulation)

Quels débits en EER?

Quels débits sanguin (QB)?


CRRT

- Débit sang : 150 ml/min
 - Attention, certaines machines transforment ce débit sang en débit plasma pour leurs mesures
 - → Importance d'introduire la valeur de l'hématocrite du patient

Débit plasma = Débit sang x (1- Hct)

Si Débit sang 150 ml/min = 9000 ml/h Débit plasma = 9000 x (1-0,30) = 6300 ml/h

I HD

Quels débits sanguin (QB)?

CRRT

- Débit sang : 150 ml/min
 - Attention, certaines machines transforment ce débit sang en débit plasma pour leurs mesures
 - → Importance d'introduire la valeur de l'hématocrite du patient

```
Débit plasma = Débit sang x (1- Hct)
Si Débit sang 150 ml/min = 9000 ml/h
Débit plasma = 9000 x (1-0,30)
= 6300 ml/h
```

IHD

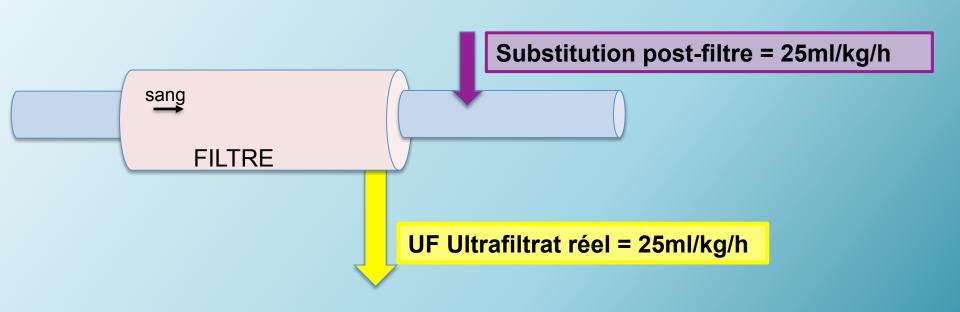
- Débit sang : 300-350 ml/ min
 - Attention la qualité de l'I HD est fortement dépendante de ce paramètre surtout pour les patients de grande masse.
 - Attention de différencier le débit demandé et le débit réel.
 - Débit réel = Quantité de sang passé dans le filtre / le temps de dialyse.
 - Impact identique de l'hématocrite sur la qualité de l'épuration

Quel débit de substitution?

Débit d'ultrafiltration :

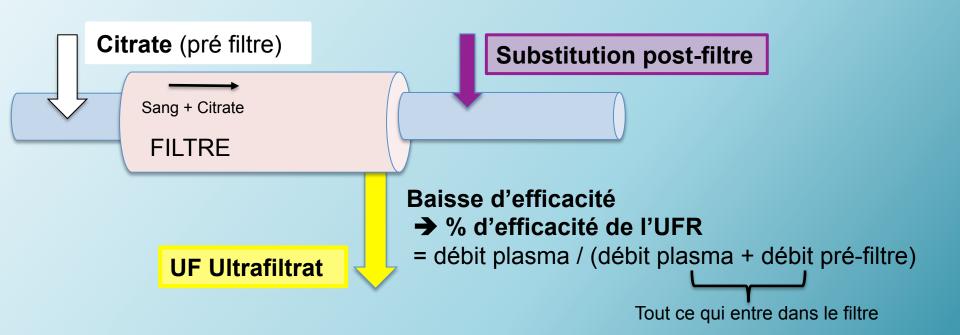
- Quantité de plasma à épurer /h
 («liquide que le rein aurait éliminé »)
- Correspond au débit d'eau plasmatique qui traverse la membrane par unité de temps

UF Ultrafiltrat


- 25ml/kg/h (consensus actuel)

Soit pour un homme de 75 Kg cela représente 75 x 25 ml épurés en 1h : soit une clearance d'environ 31 ml/min

— En I HD : 4 − 12 L /heure de substitution possible (dans un service de dialyse!)


But : viser un débit UFR de minimum 25ml/kg/h réel

→ Si uniquement réinjection post-filtre :

But : viser un débit UFR de minimum 25ml/kg/h réel

—Si Citrate et réinjection post-filtre :

Exemple:

- Débit sang 150 ml/h (9000 ml/min) → Débit plasma = 6300 ml/h
- Patient 85 kg
- Quantité totale liquides réinjectés : Citrate + réinjection post filtre 30 ml/kg/h
 => 2550 ml/h (ex : citrate 1500 ml/h + réinjection post-dilution 1050ml/h)
- % efficacité UFR = 6300 / (6300 + 1500) = 0,80 (Donc 80 % d'efficacité)

```
Citrate = 1500ml/h
= 18 ml/kg/h
```

30 ml/kg/h

Substitution post-filtre = 1050 ml/h = 12 ml/kg/h

Filtre : le citrate dilue le sang (le plasma)

Baisse d'efficacité de l'épuration plasmatique due au citrate : 80% d'efficacité

UF Ultrafiltrat = 24 ml/kg/h

Exemple:

Toute modification du débit de citrate entraînera une modification du débit de réinjection post-filtre pour garder une dose UFR = 25 ml/kg/h

% efficacité UFR = 6300 / (6300 + 1500) = 0,80 (Donc 80 % d'efficacité)

Citrate = 1500ml/h = 18 ml/kg/h 30 ml/kg/h

Substitution post-filtre = 1050 ml/h = 12 ml/kg/h

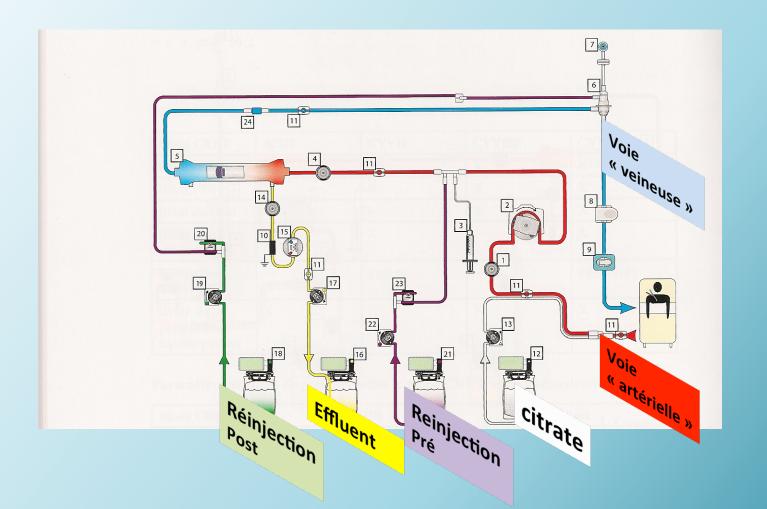
Filtre : le citrate dilue le sang (le plasma)

Baisse d'efficacité de l'épuration plasmatique due au citrate : 80% d'efficacité

UF Ultrafiltrat = 24 ml/kg/h

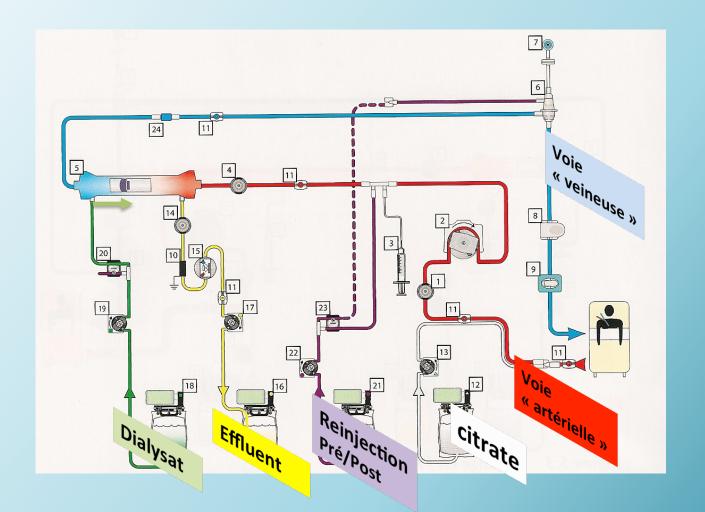
Quel débit de dialysat ?

CRRT

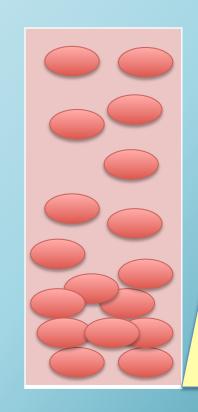

- Débit de dialysat :

 1-2 l/h
 Superflu lors d'un débit d'ultrafiltration de 25ml/kg/h réel
- L'I HD est QB/QD dépendante:
- Pour les QB entre 300-350 le QD arrive à 500 ml/min (30 x supérieure à la CRRT).

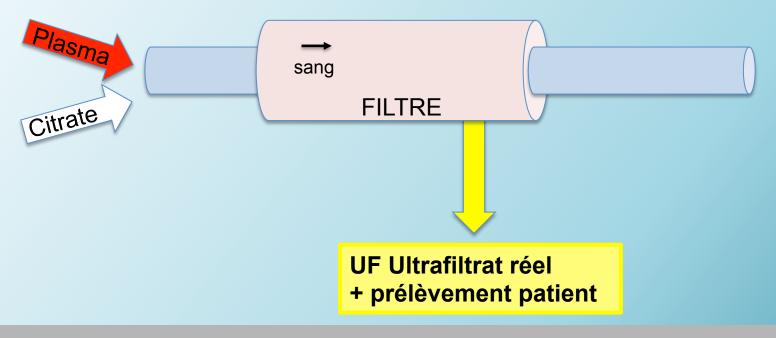
I HD


Les modes d'épuration en CRRT

CVVH: Hémofiltration veino-veineuse continue


Les modes d'épuration en CRRT

CVVHDF: Hémodiafiltration veino-veineuse continue


Fraction de Filtration?

- Fraction de Filtration :
 - Permet d'interpréter le degré de déshydratation sanguine en sortie de filtre
 - %^{age} de liquide filtré par la cartouche
 - Reflet de l'hémoconcentration du filtre

Plus le débit d'UF est grand, plus la FF sera élevée

Fraction de Filtration?

FF < 35 - 40 % (calculée sur plasma)

Un mot sur l'accès vasculaire IHD - CRRT

Veine jugulaire interne droite

(KT 12-20 cm)

- Veine fémorale (risque infectieux, BMI) (KT 20-25cm)
- Veine jugulaire interne gauche (angulation, trajet plus long)
- Veine sous-clavière (sténose)

AVEC ECHOGRAPHIE DE REPERAGE (KDIGO 1A)

Information transfert patient avec AKI

Service dialyse

- Dans quel service est transféré le patient.
- Type d'accès vasculaire.
- Niveau de risque hémorragique.
- Bilan in actualisé par 24h.
- Reprise ou non de diurèse.
- Possibilité ou non de remontée en réanimation.

Service intra hospitalier

- Date de la prochaine dialyse
- Présence d'un accès vasculaire précieux
- Risque d'OAP.
- Risque de dénutrition.
- Suivi nécessaire du bilan in/ out.
- Projet de soins.
- Revalidation.

Conclusion

- L'IRA en USI en 2015 nécessite :
 - une prise en charge multidisciplinaire.
 - L'application de mesure de <u>détection</u> (classification AKIn)
 - La mise en œuvre de moyen diagnostic adéquat.
 - Une prise en charge <u>thérapeutique</u> précoce
 - La bonne gestion de l'<u>épuration</u> sanguine extracorporelle avec évaluation de critères de qualité
 - Une **transmission** interdisciplinaire continue
 - Une <u>formation</u> continue sur les techniques et nouveautés

Remerciements

- Equipe Néphrologie Dialyse Epicura Hornu
- Equipe Soins Intensifs Epicura Hornu

Liens utiles

- Site KDIGO AKI
- Site ISN
- Site ERA EDTA
- Site Société françaises de Néphrologie
- Site SFAR / SRLF

Pour demande des diapositives ou pour demande de renseignements:

mguillenanaya@hotmail.com ncantineau@gmail.com