

Humidification active:

buts, moyens, résultats, limites

Dr Yves Laurent, USI, centre hospitalier de Jolimont-Lobbes

Introduction:

- Nécessité démontrée d'humidifier voies aériennes chez intubés (gaz médicaux « secs »)
- Plusieurs systèmes: filtres échangeurs (passifs et actifs) et humidificateurs chauffants (humidificateurs à eau froide à léchage et à bulle abandonnés car faible performance)
- Choix basé sur connaissance avantages, inconvénients et limites de chacun

Mi trop, ni trop peu...

Problèmes associés à une ventilation avec des gaz trop froids et secs

Conséquences physiologiques

Désorganisation épithéliale

Augmentation viscosité sécrétions bronchiques

Diminution transport ciliaire

Diminution production surfactant

Conséquences cliniques:

Hypothermie, déshydratation

Diminution compliance

Atélectasie

Shunt pulmonaire

Désaturation atérielle

Problèmes associés à une ventilation avec des gaz trop chauds et humides

Conséquences physiologiques:

Brûlures

Modification surfactant

Désorganisation épithéliale

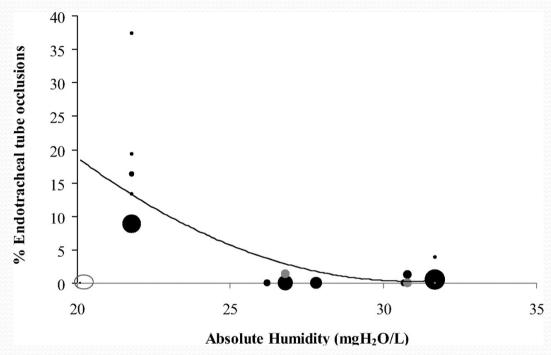
Conséquences cliniques:

Hyperthermie

Augmentation résistances pulmonaires

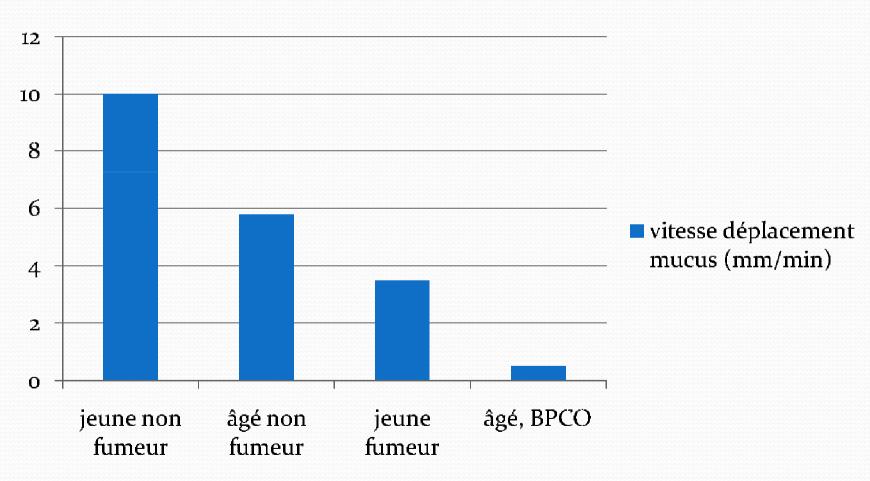
Hyponatrémie

Œdème, sténose


Diminution compliance

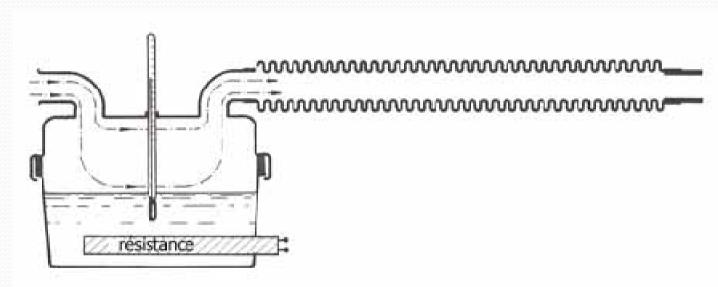
Atélectasie

Effet shunt

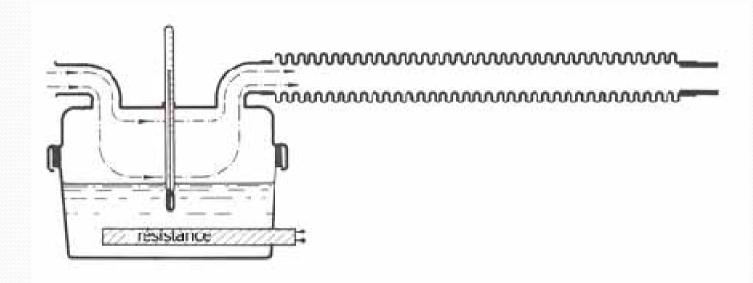

Désaturation artérielle

Ni trop, ni trop peu...

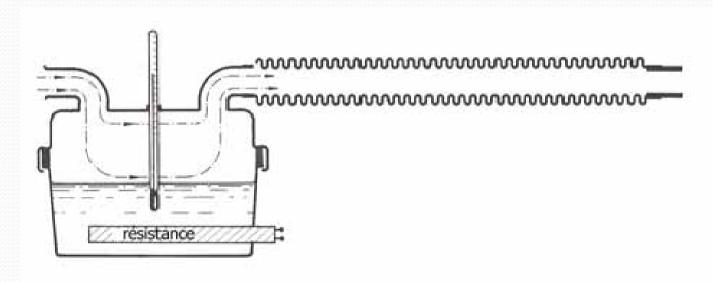
 < 25 mgrH2O/l risque important d'occlusion de sonde, 25-30 zone d'ombre, >30 risque faible, surhumidification avec les nouveaux systèmes???


Patients à risque: fumeurs, BPCO, ARDS, mucoviscidose

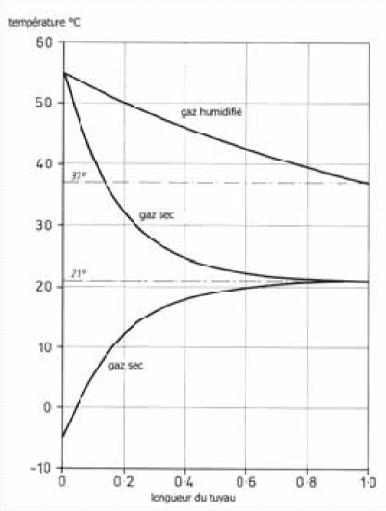
Humidificateurs chauffants (HC)


• Méthode d'humidification dite de « référence »

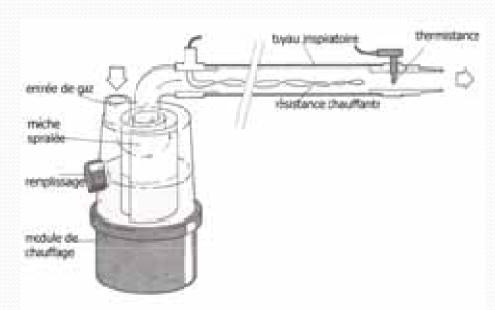
HC: mode de fonctionnement


- HC= réservoir contenant eau stérile chauffée par résistance = vaporisateur
- Gaz surface eau (la plus grande possible) + chaud et +chargé en vapeur d'eau qu'au contact du couvercle
- T° de sortie = moyenne des deux

HC: mode de fonctionnement


- Flux à distance de la surface liquide doit être réduit
- Couvercle ne doit pas être isolé (condensation à ce niveau)
- Gaz se refroidit et se charge en vapeur d'eau
- HR à la sortie augmentée

HC: mode de fonctionnement

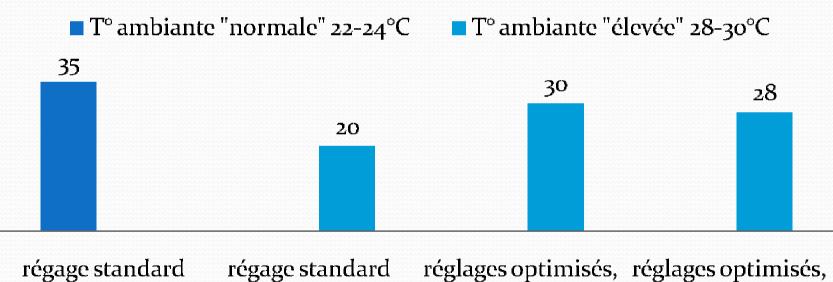

- Tuyau de sortie +- 1 mètre
- Condensation évite déperdition trop importante de T° (réaction exothermique)
- Gaz arrive au patient à 37°C et saturé en vapeur d'eau

HC: mode de fonctionnement, variation T° dans tuyau de sortie

- Exponentielle, rapide pour gaz sec (gradient T° int/ext)
- linéaire + lente pour gaz saturé en vapeur d'eau (condensation exothermique)
- Augmentation longueur tuyau ou diminution débit gaz (pédiatrie) diminue efficacité HC

HC avec circuit chauffé

- contrôle par thermistance au niveau du patient
- Pas de chute de T° et pas condensation (pas de piège à eau, diminution charge travail et contamination circuit)
- Gaz doit sortir saturé en vapeur d'eau (contact avec mèche en papier trempant dans eau et spiralé sur support en aluminium)


HC: tuyau « chauffant »

- Point faible: système de régulation basée sur T° sortie de chambre d'humidification
- Si gaz arrive chaud (T° ambiante élevée si pas de climatisation ou de sortie de respirateur à turbine), diminution T° plaque chauffante et donc évaporation moindre

Impact T° ambiante sur performances HC avec circuit chauffé

Lellouche et al. Influence of ambient air and ventilator output temperature on performances of heated-wire humidifiers Am J Respir Crit Care Med 2004; 170:1073-9)

absence gradient

40-40

compensation

automatique

 $(37^{\circ}/40),$

 $(37^{\circ}/40)$

HC avec circuits chauffés

- HC « anciens »:bonne corrélation humidité délivrée et condensation sur raccord annelé ou sur chambre d'humidification
- HC avec circuits chauffés: bonne corrélation humidité délivrée et condensation sur chambre si T° ambiante normale mais pas si T° ambiante

HC avec circuits chauffés

• Fonctionnement à « contre-courant » et nouveaux algorithme de compensation; +-40 mgH²O/L et beaucoup moins sensible à T°C ambiante mais attention à la sur-humidification....

HC et hypothermie

- ECH non recommandés depuis longtemps si T°<32°C
- Hypothermie modérée (33°C) post ARCA? ECH et booster nettement moins efficaces, efficacité HC non influencée mais risque théorique non connu de condensation dans le patient (contenu en eau > contenu max d'un gaz à 33°C) (Lellouche F. et al. Under-humidification and overhumidification during moderate induced hypothermia with usual devices. Intensive Care Med 2006;32(7):1014-21

VNI

- Voies aériennes supérieures non court-circuitées mais capacités réchauffement-humification sur-sollicitées par:
- gaz secs et froids
- Débits, pressions inhabituellement élevés
- Respiration préférentiellement buccale
- Pas de recommandation mais gaz secs à éviter car population très à risque

VNI

- Performances filtres diminuées si fuites
- Espace mort (augmentation travail respi et diminution ventilation alvéolaire)
- Mais taux de succès VNI non influencé par ces effets négatifs chez hypoxiques et hypercapniques! (Lellouche F. et al. Impact of the humidification device on intubation rate during NIV: results of a multicenter RCT. Intensive Care Med 2005; 31:S72)
- Mais si hypercapnie sévère persistante et manaçante sous VNI, conseil d'envisager HC

Comparaison humidité produite

ECH	Humidificateur chauffant
19,6 mgr/l à 33,2 mgr/l	Mode invasif 44 mgr/l (débit o. 3 à 60 l/min)
Humidité produite varie selon: -Type ECH -Volume courant et ventilation minute -T° et humidité du gaz délivré -T° du patient (<32°C, gaz expiré 34 mgr/l, 80%=27,2 mgr/l)	Humidité produite est constante quels que soient les paramètres de fonctionnement

	Avantages	Inconvénients
ECH	Pas de risque électrique Pas de sur humidification Peut diminuer le risque infectieux Bon marché Pas de maintenance Simple d'utilisation	Résistance ajoutée Espace mort Risque d'occlusion en cas de sous- humidification
HC	Humidification adéquate Bon contrôle de la T° Souplesse d'utilisation Possibilité de réchauffement	Immobile Branchement électrique Choc électrique Eau de condensation dans les circuits du ventilateur Monitorage T° nécessaire Contamination bactérienne Surhumidification Hyperthermie, brûlure Erreur de connexion Maintenance Coût

Comparaison HC-ECH

 Absence de risque supplémentaire de pneumopathie acquise malgré contamination rapide du circuit

Contre-indication des filtres

Cause	Raison
Sécrétions très abondantes (CI relative), hémoptysie massive	Risque d'obstruction et changements intempestifs
Volume courant trop petit ou >10l/min	Augmentation du rapport espace mort/VC diminution efficacité
Fistule broncho-pleurale drainée, fuite (ballonnet percé,)	Fraction gaz expirés est faible rendant le filtre inefficace pour l'humidification
Tous patients présentant des bouchons muqueux	Tendance à la formation de bouchons muqueux
Filtre disponible peu performant	OK pour la SOP, ventilations courtes et terrain respiratoire peu pathologique
Hypothermie profonde (<32°C)	Insuffisance chaleur produite et humidité
Intoxication par produits à élimination respiratoire, nébulisation médication	Entrave élimination par réinhalation

Recours conseillé à l'humidificateur chauffant

- >4-7 j de ventilation mécanique avec un ECH
- Sécrétions abondantes et/ou visqueuses et/ou sanglantes
- Haut ou bas VT
- Sevrage ventilatoire difficile
- Fuites aériques
- Hypothermie (<32°C)
- VNI