

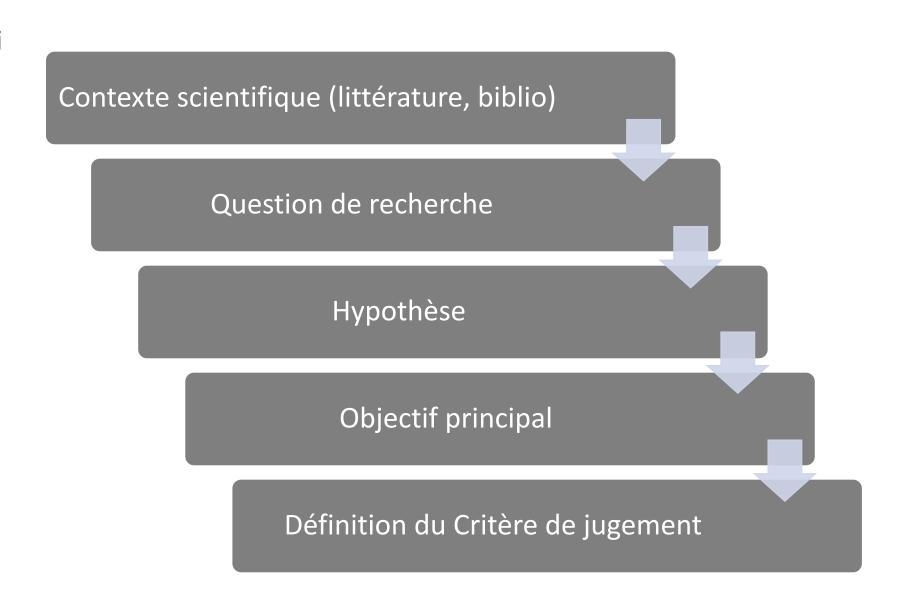
Critères de jugement -Calcul d'effectif

Mercier Gwennaëlle Soins intensifs Hôpital Erasme Université Libre de Bruxelles-Belgique

Plan

Critères de jugement

- Pourquoi un critère de jugement ?
- Définition
- Qualité des critères de jugement
- Exemples


Taille d'échantillon

- Eléments à prendre en considération
- Type d'erreur
- Exemples

Critères de jugement : pourquoi?

Différentes étapes de l'essai thérapeutique :

✓ Hypothèse:

La douleur diminue significativement pour les patients faisant partie du groupe d'intervention (avec l'utilisation du nouveau protocole de gestion de la douleur)

✓ Objectif principal:

Evaluer l'effet de l'utilisation d'un nouveau protocole de gestion de la douleur chez les patients USI.

Définition

- Indispensable dans les essais cliniques randomisés (utilisé même dans une étude observationnelle)
- > Critère de jugement principal = variable choisie pour évaluer l'effet de l'intervention à l'étude. Va permettre de conclure sur l'objectif principal de l'étude
- Variable (également appelé variable réponse ou outcome) pour laquelle les groupes sont comparés.
- Nécessité de juger l'effet d'une intervention de façon mesurable afin de pouvoir réaliser des calculs statistiques (significativité d'une différence, intensité d'amélioration ...)

Définition peu précise	Définition plus précise		
Fièvre Hyperéosinophilie diarrhée	Fièvre > 39° pendant 3 jours Éosinophilie > 1000c/mm³ > 3 selles liquides par jour		
Le patient a plus ou moins mal	Variation de l'EVA		
Amélioration de l'escarre	Diminution ou augmentation de la taille de l'escarre (en cm²)		
Sommeil	Nombre d'heures (sur base d'un EEG)		

➤ Utiliser une <u>définition consensuelle</u> plutôt qu'originale mais non reconnue par la communauté

Définition : variables

Une variable = une caractéristique susceptible de prendre une valeur différente selon les individus (ou les unités statistiques)

Ex : taille d'une personne, couleur des cheveux, durée d'une maladie, dosage

sanguin...

Variables quantitatives

Variables qualitatives

Définition: variables quantitatives

✓ Définition :

Variable caractérisée par une valeur numérique

- √ 2 types de variables quantitatives :
 - ➤ Variable <u>quantitative continue</u> : qui peut prendre n'importe quelle valeur numérique (il existe donc une infinité de valeurs possibles)

Rem : la précision va dépendre de l'instrument de mesure.

Exemple : poids, taille, taux de cholestérol, PAS ...

➤ Variable <u>quantitative discrète</u>: c'est un nombre entier, résultat d'un dénombrement

Exemple: nombre d'enfants (0 à ...), rappel de vaccin (0-1-2-3) ...

Définition: variables qualitatives

✓ Définition :

Variable qui n'a pas de valeur numérique, peut prendre différentes valeurs prédéfinies Exemple : couleur des yeux, niveau d'étude, genre ...

- √ 3 types de variables qualitatives ou catégorielles :
 - ➤ Variable <u>qualitative nominale</u>: catégorie non ordonnée Exemple: groupe sanguin, état civil, nationalité ...
 - ➤ Variable <u>qualitative ordinale</u>: classes ou catégories qui peuvent être ordonnées Exemple: groupe d'âge, niveau d'étude ...
 - ➤ Variable <u>binaire ou dichotomique</u>: type particulier d'une variable qualitative nominale qui ne peut prendre que 2 valeurs
 - Exemple : état de santé (malade/non-malade), décédé (oui/non), genre (M/F)...

Définition: différents types

Critère de jugement principal :

variable considérée comme la plus importante, doit être parfaitement décrit Et est utilisé dans le calcul de la taille d'échantillon

Critères de jugement secondaires :

évaluent les effets additionnels de l'intervention (effets non attendus de l'intervention, bénéfices secondaires, mécanismes d'action, effets indésirables...)

Critères de jugement composite:

critère de jugement qui prend en considération simultanément plusieurs évènements cliniques

intérêt : mesure le rapport bénéfice/risque ou combiner des évènements également pertinent (ex: infarctus – AVC – ischémie aiguë de membre)

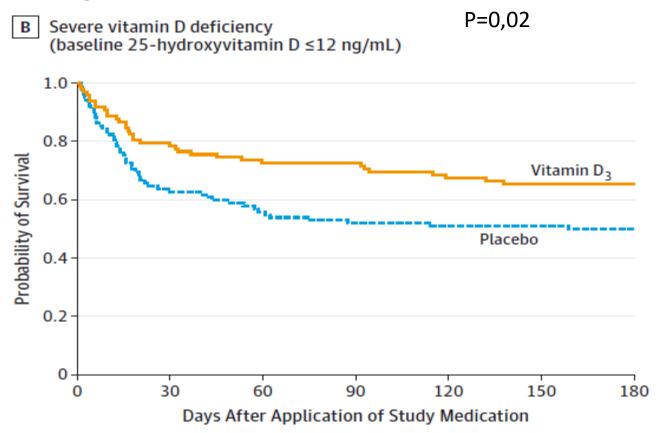
Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of High-Dose Vitamin D₃ on Hospital Length of Stay in Critically III Patients With Vitamin D Deficiency The VITdAL-ICU Randomized Clinical Trial

Karin Amrein, MD, MSc; Christian Schnedl, MD; Alexander Holl, MD; Regina Riedl, MSc; Kenneth B. Christopher, MD; Christoph Pachler, MD; Tadeja Urbanic Purkart, MD; Andreas Waltensdorfer, MD; Andreas Münch, MD; Helga Warnkross, MD; Tatjana Stojakovic, MD; Egbert Bisping, MD; Wolfgang Toller, MD; Karl-Heinz Smolle, MD; Andrea Berghold, PhD; Thomas R. Pieber, MD; Harald Dobnig, MD

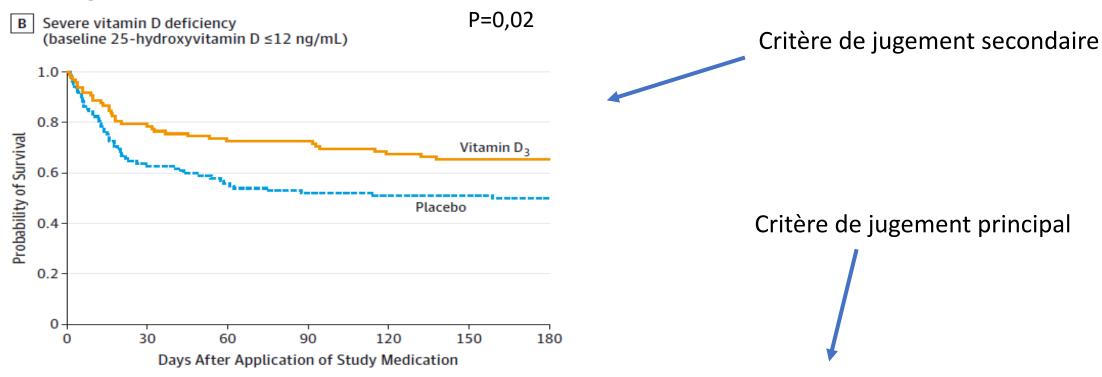
OBJECTIVE To investigate whether a vitamin D3 treatment regimen intended to restore and maintain normal vitamin D status over 6 months is of health benefit for patients in ICUs.

DESIGN, SETTING, AND PARTICIPANTS A randomized double-blind, placebo-controlled, single-center trial, conducted from May 2010 through September 2012 at 5 ICUs that included a medical and surgical population of 492 critically ill adult white patients with vitamin D deficiency ($\leq 20 \text{ ng/mL}$) assigned to receive either vitamin D3 (n = 249) or a placebo (n = 243).


<u>INTERVENTIONS</u> Vitamin D3 or placebo was given orally or via nasogastric tube once at a dose of 540 000 IU followed by monthly maintenance doses of 90 000 IU for 5 months.

MAIN OUTCOMES AND MEASURES The primary outcome was hospital length of stay.

Secondary outcomes included, among others, length of ICU stay, the percentage of patients with 25-hydroxyvitamin D levels higher than 30 ng/mL at day 7, hospital mortality, and 6-month mortality.


Figure 2. Survival Within 6 Months After Randomization

Bénéfice sur la mortalité ?

Figure 2. Survival Within 6 Months After Randomization

	Placebo (n=238)	Vit D3 (n=237)	P-valeur
Durée de séjour hospitalière médiane (range)	19,3 (0,1-154,1)	20,1 (0,2-181)	0,98

THE LANCET

Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial

Richard PWhitlock, PJ Devereaux, Kevin HTeoh, Andre Lamy, Jessica Vincent, Janice Pogue, Domenico Paparella, Daniel I Sessler, Ganesan Karthikeyan, Juan Carlos Villar, Yunxia Zuo, Álvaro Avezum, Mackenzie Quantz, Georgios I Tagarakis, Pallav J Shah, Seyed Hesameddin Abbasi, Hong Zheng, Shirley Pettit, Susan Chrolavicius, Salim Yusuf, for the SIRS Investigators*

Primary outcomes were mortality at 30 days after randomization

acomposite of death myocardial injury, stroke, renal failure (stage 3 acute kidney injury, 2012 Kidney Disease Improving Global Outcomes [KDIGO] guidelines), or respiratory failure (uninterrupted postoperative mechanical ventilation for more than 48 h) at 30 days after randomisation.

THE LANCET

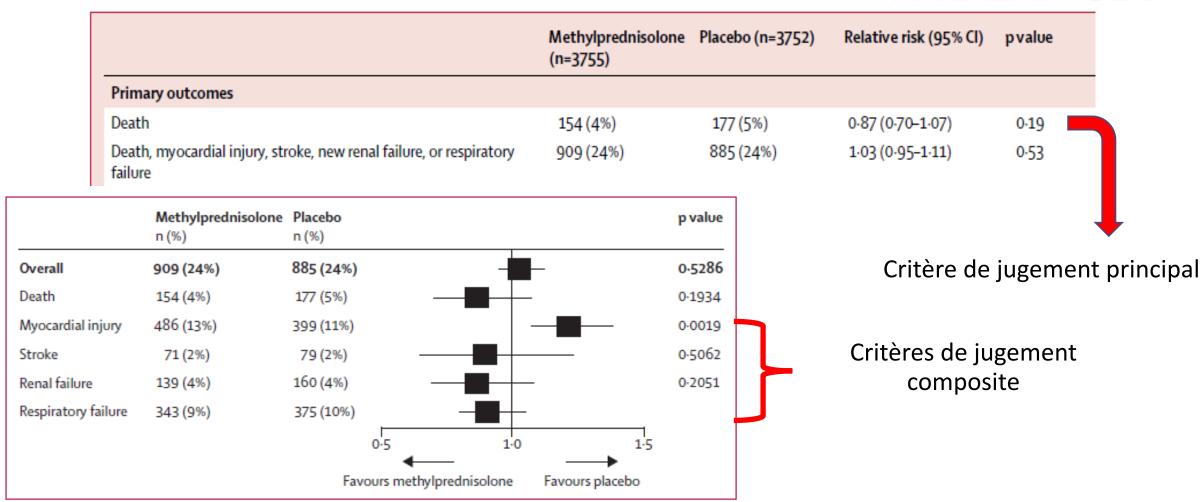


Figure 2: Relative risk of the composite primary outcome and its components The horizontal lines represent the 95% CL.

Whitlock RP et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomized, double-bling, placebo-controlled trial. The Lancet. 2015;386: 1243-1253.

✓ Critère de jugement principal :

La douleur du patient évaluée pendant une période déterminée 2 fois par shift (au début et à la fin de la prise en charge) à l'aide de l'EVA.

✓ Critères de jugement secondaires:

- Durée de séjour à l'USI
- Repos des patients
- Durée de la ventilation mécanique

Qualité des critères de jugement

Tenir compte des qualités spécifiques afin d'opérer un choix rationnel du critère de jugement

- Pertinence : réponse au problème posé
- Signifiant en termes cliniques (morbidité, AVC, épuration extra-rénale, mortalité, qualité de vie,...)
- Objectif: ex dosage sanguin et non bon ou mauvais
- Unique : ex : cicatrisation d'un ulcère duodénal

Qualité des critères de jugement

Mesures des variables chez le patient >>

Exactitude: donne la vraie valeur – justesse (ex : balance)

<u>Précision:</u> faible variabilité (si répétition de la mesure → donne le même résultat)

<u>Reproductibilité</u>: aptitude à produire la même valeur en cas de conditions identiques (variation biologique intra-individuelle)

Sensibilité : capacité d'un test à détecter les vrais malades

<u>Spécificité</u> : capacité d'un test à détecter les vrais non-malades

Qualité des critères de jugement

- ➤ Réalisation d'examens chez les sujets → acceptables, aisés et peu coûteux
- > Ethique, pratique (non douloureux pour le patient) et important pour le patient.

Ex : concentration d'un ATB dans le LCR = refaire PL ...

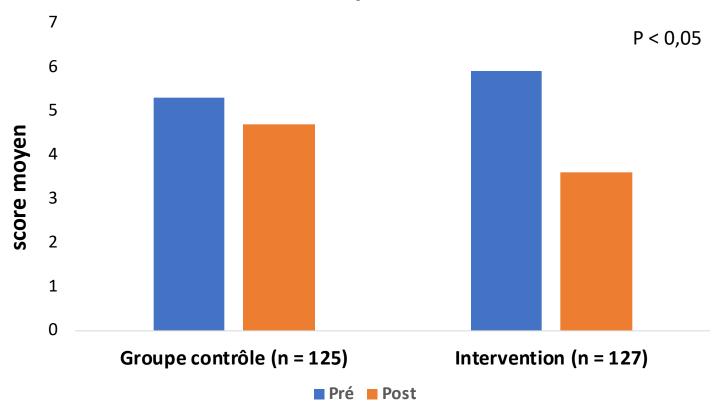
Il ne faut pas choisir plusieurs critères de jugement principal car cela amène à des problèmes d'interprétation liés à de multiples analyses

Intensive Care Med (2014) 40:1295–1302 DOI 10.1007/s00134-014-3339-z

ORIGINAL

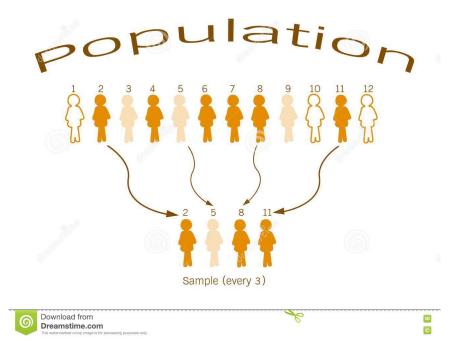
Kathleen Puntillo Shoshana R. Arai Bruce A. Cooper Nancy A. Stotts Judith E. Nelson A randomized clinical trial of an intervention to relieve thirst and dry mouth in intensive care unit patients

Objectif: To test an intervention bundle for thirst intensity, thirst distress, and dry mouth


Description du critère de jugement principal :

A research team nurse (RTN) used NRSs (0–10) to obtain patient thirst ratings at baseline and during subsequent assessments. The NRS has been widely used to assess pain intensity and other symptoms; has face, construct, and concurrent validity [32]; and is feasible for use in ICUs. To measure TI, the RTN asked the patient, "how intense is your thirst, on this scale, where 0 = no thirst and 10 = worst possible thirst?"

For patients unable to communicate orally owing to endotracheal intubation, the RTN held up a laminated sheet showing the NRS and/or asked the patient to nod affirmatively when she pointed to the number that corresponded to their TI or TD. Independent scoring by two RTNs for 50 assessments was initially compared to assure inter-rater reliability

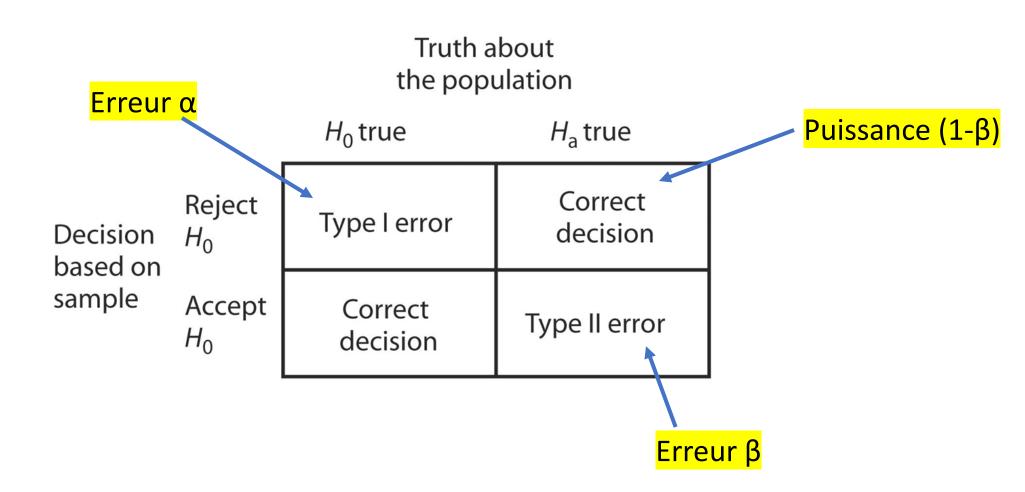


Variation des scores moyens d'intensité de la soif

Taille d'échantillon

Taille d'échantillon

- Dans les essais cliniques randomisés le nombre de sujets à inclure (n) se définit à l'avance
- Le n doit être assez large afin d'obtenir une haute probabilité de détecter une différence statistiquement significative = <u>puissance de l'essai</u>, par convention > 80% (1-risque de conclure à l'absence d'effet alors qu'il y en a un)
- ➤ A effectif constant la puissance est d'autant plus grande que la différence entre les groupes est importante
- ➤ Si effet attendu est faible (petites différences) → grande taille d'échantillon
- Se calcule sur base du critère de jugement principal


Eléments à prendre en compte

Le calcul de la taille d'échantillon doit tenir compte de :

- L'effet attendu dans chaque groupe (différences attendues)
- L'erreur α (type I) = 5%
- La puissance statistique : 1- erreur β (type II), > 80%
- La fréquence de l'évènement dans le groupe contrôle et pour les variables quantitatives continues = déviation standard (dispersion)
- Souvent on augmente la taille d'échantillon pour faire face aux perdus de vue, examens non réalisés etc.

Type d'erreur

Fréquence évènement dans le groupe contrôle ou moy (ds)

Statistical Analysis

Sample size calculation was performed using the Mann-Whitney test. It was based on 2008 routine data collected by medical and surgical ICUs participating in our trial from patients who stayed 48 hours or more. A mean length of hospital stay of 14 days with a standard deviation of 7 days was inferred. The effect size of a 2-day shorter hospital stay was set arbitrarily and was delineated as what we decided was the smallest unit of time that would be of benefit to the patient. The number of patients needed for the study was calculated to be 468 at a 2-sided significance level of α = .05 and 80% power. Including a drop-out rate of 5%, 490 patients needed to be randomized.

Effet attendu

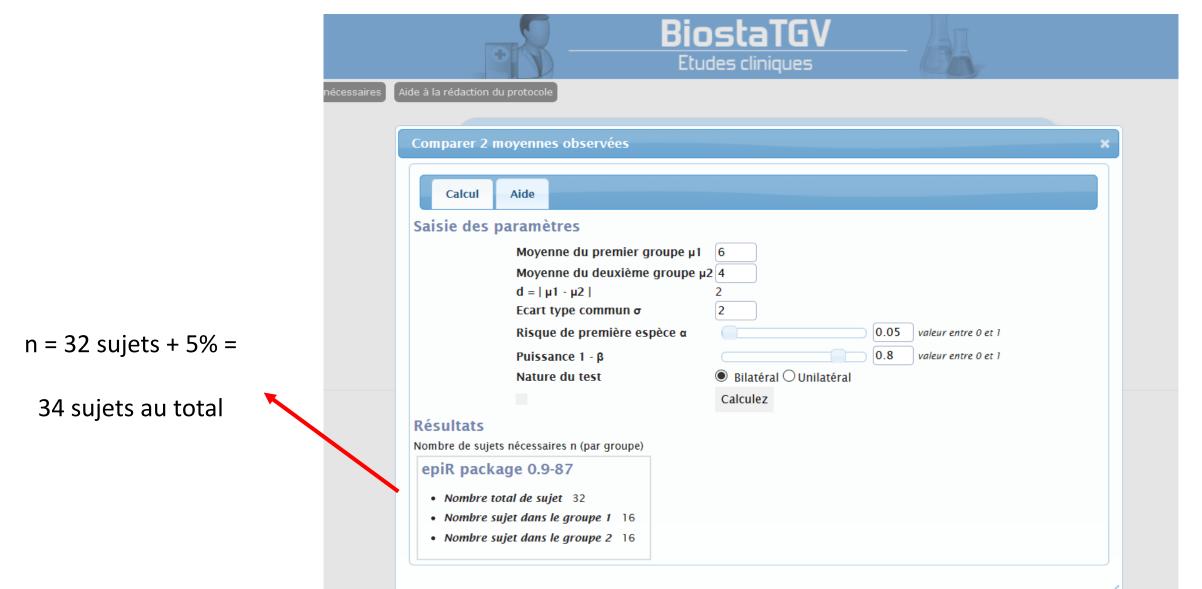
Risque α et puissance

Nombre de patients

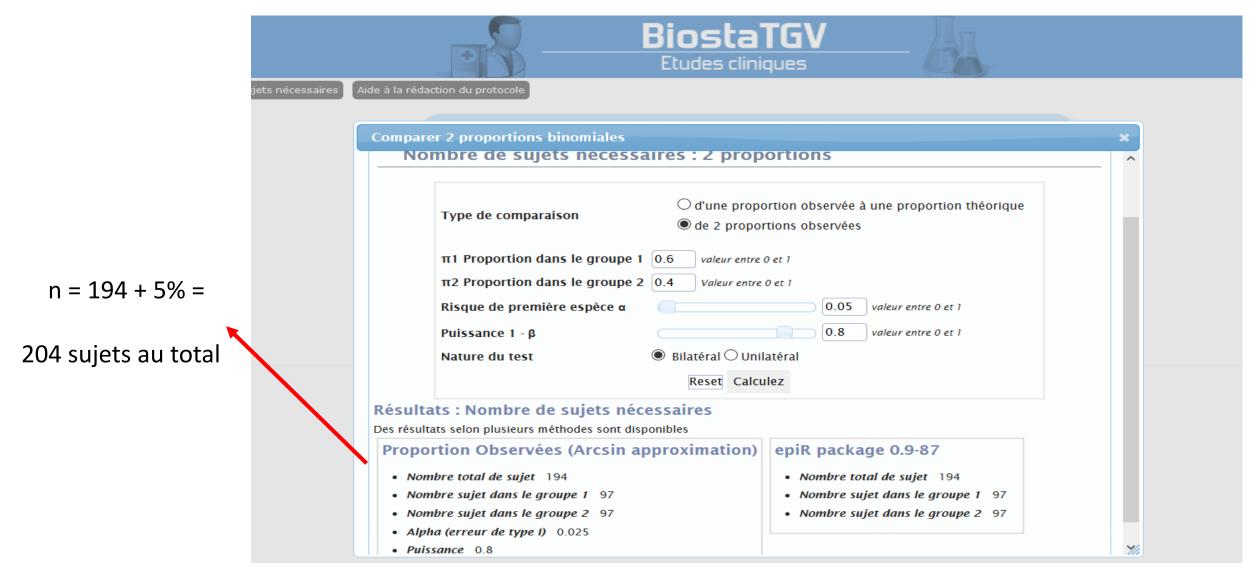
- ✓ L'effet attendu dans chaque groupe : diminution de l'EVA de 2
- ✓ L'erreur α (type I) =5%
- ✓ La puissance statistique = 80%
- **✓** Fréquence dans le groupe contrôle:
 - Variables quantitatives continues : étude descriptive : EVA moyen = 6 (±2)
 - ➤ Variable dichotomique: groupe avec EVA > 4 versus EVA ≤ 4 avec fréquence chez le groupe contrôle = 60%
- ✓ Ajoute 5% de sujets

Calcul de la taille d'échantillon

Calculator free online


http://marne.u707.jussieu.fr/biostatgv/?module=etudes/sujets

Calcul de la taille d'échantillon


Variables quantitatives : comparaison de 2 moyennes

Calcul de la taille d'échantillon

Variables catégorielles : comparaison de 2 proportions

Conclusion

- ✓ Permet de répondre à l'objectif principal
- ✓ Indispensable à définir de manière très précise
- ✓ Choisir le critère de jugement en tenant compte de ces différentes caractéristiques
- √ Va être utilisé pour calculer la taille de l'échantillon

Merci pour votre attention